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Abstract: Torenia fournieri (T. fournieri) is one of the most widely used horticultural flowers and
is considered a potential model plant for the genetic investigation of ornamental traits. In this
study, we optimized an efficient protocol for high efficiency preparation and transformation of
T. fournieri protoplast. The transformation rate reached ~75% when a 35S:GFP construct was used
for the transformation. Using this system, we characterized the subcellular localization of several
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription
factors (TFs), and found a distinct localization pattern between the CIN and CYC classes of TCP TFs.
Furthermore, we also demonstrated the feasibility of the expression of dual luciferase assay system in
T. fournieri protoplasts for the measurement of the activity of cis-regulatory elements. Taken together,
a well-optimized transient expression system in T. fournieri protoplasts would be crucial for rapid
exploration of the gene function or cis-regulatory elements.

Keywords: Torenia fournieri; protoplast; ornamental flower; TCP; transient expression

1. Introduction

Torenia fournieri (T. fournieri) is one of the most commercially popular ornamental flow-
ers. There are many cultivars as well as some interspecific hybrids (T. fournieri × T. concolor).
They are bred to have various flower colors including blue, white, pink, and violet to meet
the demand of the horticulture market [1]. In addition to the high ornamental value,
T. fournieri is also considered as an excellent model for studying important ornamental
traits [2]. The lifespan of T. fournieri is relative short, about 3–6 months from seed to
seed, which facilitates genetic research. T. fournieri has ideal floral phenotypes such as
various flower color and bilateral symmetrical floral shape. T. fournieri produces a large
quantity of seeds which enable large-scale mutant library construction and screening. More-
over, when compared to other widely used model plants, T. fournieri has a genome size
(~1.71 × 108 bp) similar as Arabidopsis (1.57 × 108 bp) but smaller than Antirrhinum majus L
(~5.10 × 108 bp) [3,4]. The relatively small genome makes it easier for genetic studies such
as the mapping of ornamental traits-related genes. Furthermore, T. fournieri can be easily
transformed using Agrobacterium-mediated methods, facilitating functional study of candi-
date genes in planta [5,6]. In addition, the application of the genome-editing technology,
CRISPR/Cas9, has been also reported in T. fournieri recently [7]. In summary, these features
make T. fournieri a suitable model plant for ornamental traits studies.

However, many molecular methods/technologies have not been established in
T. fournieri, such as an efficient transient expression system. On some occasions, tran-
sient expression in protoplasts can be sufficient to demonstrate certain properties of the
protein of interest, while it is simple, and timesaving compared with stable transformation
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strategies. Protoplasts have been widely used in many plants, such as Arabidopsis, rice,
maize, soybean for transient expression analysis [8]. In this study, we optimized an efficient
method for protoplast transformation in T. fournieri, in which the transformation rate could
be as high as ~75%, comparable to that in Arabidopsis [9]. Moreover, commonly used
reporters, GFP and luciferase, were tested and expressed well in T. fournieri protoplasts. To
further demonstrate the efficacy of this protocol, we analyzed the subcellular localization
of eight TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FAC-
TOR) transcription factors (TFs). Together, we demonstrate that the optimized protoplast
transformation protocol for T. fournieri is convenient and effective for transient expres-
sion experiments and would be valuable for further characterization of gene functions
in T. fournieri.

2. Results
2.1. Isolation of Protoplasts from T. fournieri Leaves

Based on the reported Arabidopsis protoplast isolation methods [9], we established
an efficient protocol for the isolation of high-quality protoplasts from 35–45-day-old
T. fournieri leaves (Figure 1A). Briefly (for full protocol, see the supplementary files), lower
epidermises of healthy leaves from T. fournieri were removed with adhesive tapes and
then submerged into the enzyme solution for ~4 h. The protoplasts were then washed
with W5 solution in a 15 mL tube. A portion of the protoplasts was taken out for mi-
croscopic examination to assess the quality (Figure 1A). In order to determine the best
combination of cellulase and macerozyme for the T. fournieri protoplast isolation, we
compared the protoplast yield between twelve combinations of the enzymes, (Figure 1B).
The results showed that the highest yield (~60 × 104 protoplast/mL) of protoplast from
four leaves were obtained using 0.15 g Cellulase (R10) and 0.05 g Macerozyme per 10 mL
enzyme solution in ~4 h (Figure 1B). Similar results could be achieved by replacing cel-
lulase R10 with cellulase RS, a cellulase produced by a strain derived from the parental
strain of Cellulase R10 (Figure 1B). In addition, we tested the effect of digestion duration
on the yield of protoplasts. We found that 4–5 h digestion time allows for the maxi-
mum yield of protoplasts (~60–70 ×104 protoplast/mL), while 2–3 h digestion generated
the yield of ~20–40 ×104 protoplast/mL, which is in generally sufficient for small-scale
experiments (Figure 1C).

2.2. Protoplast Transformation

To optimize the protocol for the transformation of T. fournieri protoplast, several pa-
rameters were investigated based on previous reports [9], including the incubation time, the
molecular weight of polyethylene glycol (PEG) as well as the effect of endotoxin [10]. First,
according to the Arabidopsis protoplast transformation method [9], 10 µg of 35S:GFP vector
(served as the positive control), 100 µL protoplast (~2 × 104) and PEG4000 (molecular
weight: 4000) at a final concentration of 20% were mixed and incubated for a duration of
1–15 min. We observed the maximum transformation rate (up to 70–75%) were achieved by
incubating the mixture for 10 min (Figure 2A). Additional incubation time up to 15 min did
not further improve the transformation efficiency. In contrast, incubating the transforma-
tion mixture for 5 min only results in ~25% transformation rate (Figure 2A). Furthermore,
the molecular weight of PEG played a role in the transformation efficiency. Among the
PEG with different molecular weight, PEG4000 gave the highest transformation efficiency
(Figure 2B), which is in line with the findings in Arabidopsis [9] or soybean [11]. In con-
trast, using PEG3350, PEG6000 and PEG8000 in T. fournieri protoplast transformation only
resulted in 10–50% transformation rate (Figure 2B). Furthermore, in some experiments,
such as chromatin immunoprecipitation (ChIP) [12] or co-immunoprecipitation (CoIP) [13],
a large number of transformed protoplasts (usually 105–106 or more) are required. In gen-
eral, assuming > 105–106 transformed protoplasts were needed, at least 1 mL of protoplasts
as well as 100 µg of plasmid should be used for transformation according to the transfor-
mation protocol in this study. Endotoxin is a common contaminant during minipreparation
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of plasmid. Based on our previous experience, the endotoxin contamination in the plasmid
would significantly affect the transformation rate, especially when the plasmids extracted
by the commercial kit were used in large quantity (e.g., >100 µg). Thus, we tested the effect
of endotoxin on the protoplast transformation efficiency by transforming the protoplasts
with plasmids with (+) or without (−) going through the endotoxin removal procedure
in a large-scale transformation [10]. As expected, the endotoxin removal procedure could
significantly enhance the transformation efficiency when 1 mL protoplasts (~106) were
transformed with 100 µg plasmid (Figure 2C,D).

In addition, the transient expression of luciferase (LUC) reporters in protoplast or
tobacco cell was widely used for assessing the activities of cis-regulatory elements [14,15].
To confirm whether T. fournieri protoplasts could be used for the measurement of luciferase
activity, the coding sequence of a LUC reporter was cloned downstream of a cauliflower
mosaic virus (CaMV) 35S promoter or a mini 35S promoter (m35S). The m35S contained only
the 48 bp core sequence of 35S promoter, which has no transcription activity. Additionally,
the signal of the constitutively expressed Renilla (35S:Ren) served as the transfection control
to normalize the LUC activity (Figure 2E). The results demonstrated that the LUC/Ren
activity of protoplasts transformed with the LUC reporter driven by the full length 35S
was significantly higher than those transformed with the LUC reporter driven by the m35S
(Figure 2E). The data suggested that it is possible to use luciferase reporters to measure
the activity of a cis-regulatory element (e.g., promoter and enhancer) in the T. fournieri
protoplast system optimized in this study.
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pension of the protoplast in the W5 solution. Step 5: Microscopic examination of the quality of the 
protoplasts. Scale bar = 50 μm. (B) The effect of different enzyme combinations on the efficiency of 
torenia protoplast isolation. Significant analysis was performed by ANOVA followed by Tukey post 
hoc test (p < 0.05). Error bars indicate the standard deviations of eight biological replicates. (C) The 
effect of enzyme digestion time on the torenia protoplast isolation. Error bars indicate the standard 
deviations of eight biological replicates. 
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Figure 1. Isolation of T. fournieri protoplast using different combinations of enzymes and condi-
tions. (A) Overview of the experimental procedure of torenia protoplast isolation. Step 1: Prepa-
ration of 45–60-day-old torenia plants with healthy and fully expanded leaves. Scale bar = 1 cm.
Step 2: Removal of the lower epidermis of torenia leaf with adhesive tape. Step 3: Submerging
the leaves on adhesive tape into the enzyme solution with the abaxial surface facing downward.
Step 4: Resuspension of the protoplast in the W5 solution. Step 5: Microscopic examination of the
quality of the protoplasts. Scale bar = 50 µm. (B) The effect of different enzyme combinations on the
efficiency of torenia protoplast isolation. Significant analysis was performed by ANOVA followed by
Tukey post hoc test (p < 0.05). Error bars indicate the standard deviations of eight biological replicates.
(C) The effect of enzyme digestion time on the torenia protoplast isolation. Error bars indicate the
standard deviations of eight biological replicates.
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Figure 2. Transformation of T. fournieri protoplast. (A) The effect of polyethylene glycol (PEG,
molecular weight: 4000) incubation time on the protoplast transformation efficiency. Significant
analysis was performed by ANOVA followed by Tukey post hoc test (p < 0.05). Error bars indicate
the standard deviations of five biological replicates. (B) The effect of molecular weight of PEG on the
protoplast transformation efficiency (Incubation time: 10 min). Significant analysis was performed
by ANOVA followed by Tukey post hoc test (p < 0.05) Error bars indicate the standard deviations
of five biological replicates. (C) Removing (+) endotoxin or not (-) from the plasmids influences
the protoplast transformation rate. PEG4000 was used and the incubation time was 10 min. About
1 mL protoplasts (~106) was used for this analysis. Asterisk (*) indicated the significant difference
between two treatments by Student’s t-test (p < 0.05). Error bars indicate the standard deviations of
five biological replicates. (D) A confocal image showing the torenia protoplast after transformation
using the 35S:GFP vector. PEG4000 was used, the incubation time was 10 min, and the endotoxin
was removed from the vectors. BF: Confocal brightfield channel; Merge: Merge of GFP and BF
channel. Scale bar = 25 µm. (E) Luciferase activity assay in torenia protoplast. Vector constructs
were indicated in the left panel. LUC, Firefly Luciferase. m35S, a mini-35S promoter (48 bp). Ren,
Renilla reporter for normalization. Relative LUC/Ren activities (right panel) indicated the levels of
gene expression activated by m35S or full length 35S promoter. Asterisk (*) indicated the significant
difference between two constructs by Student’s t-test (p < 0.05). Error bars indicate the standard
deviations of five biological replicates.

2.3. Subcellular Localization Analysis of the TCP TFs Using the Optimized T. fournieri Protoplast
Transformation Protocol

TCP TFs are important regulators of plant developmental processes [16]. TCPs are
classified into two major classes, Class I and Class II. The latter can be further divided
into the CIN and CYC/TB1 subclusters (Figure 3A) [16,17]. In T. fournieri, about 21 TCP
encoding genes have been predicted using RNA-seq data. Functions of several TfTCPs
have been characterized, indicating the conserved roles of TfTCPs in regulating T. fournieri
development [17]. Most of the Arabidopsis TCPs (AtTCPs) in Class I and CIN subclass
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as well as T. fournieri TCP8 (TfTCP8) and TfTCP13 have been reported to localize in the
nucleus [17–20]. In order to test the optimized protoplast transformation system in real ap-
plication, we selected several TCPs, including TfTCP3, TfTCP6, TfTCP9, TfTCP13, TfTCP15,
TfCYC2, TfCYC3 and AtTCP1 (Figure 3A), to perform subcellular localization analysis. We
cloned the coding sequence of these TCPs downstream of a 35S promoter and in frame with
a C-terminal GFP. In line with the previous observation that TfTCP8 and TfTCP13 were
localized in the nucleus of tobacco cell [17], TfTCP8-GFP and TfTCP13-GFP signals were
also detected exclusively in the nuclei of the transformed T. fournieri protoplasts (Figure 3B).
From the phylogenetic tree analysis, TfTCP6 and TfTCP9 formed a distinct clade with the
CIN class TCPs from Arabidopsis. In T. fournieri protoplasts, the signals of TfTCP6-GFP
and TfTCP9-GFP were also exclusively localized in the nuclei, which resembled other CIN
class TCPs from Arabidopsis [20], strawberry [21], grapevine [22], etc. We further analyzed
the subcellular localization of three T. fournieri CYC class TCPs, including TfTCP15 [17],
TfCYC2 (NCBI accession: LC102287) and TfCYC3 (NCBI accession: LC102288). Unlike the
exclusive nuclear localization of the T. fournieri CIN class TCPs, these three proteins were
found in both nucleus and cytoplasm resembling their Arabidopsis homologues, AtTCP1
(Figure 3A,B). Together, these data suggested a powerful role of T. fournieri protoplast for
the investigation of the subcellular localization of candidate proteins.
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localization of selected TCPs (marked in red triangle in left panel). BF: Confocal brightfield channel;
Merge: Merge of GFP and BF channel. Scale bar = 20 µm.
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3. Discussion

Recently, T. fournieri has been considered as one of the potential model plants to
study the development-related ornamental traits at the molecular level [2,23,24]. Transient
expression experiments, such as the protoplast transformation system are widely used
for the investigation of the molecular mechanism regulated by the gene of interest [9].
Protoplast isolation as well as transformation for transient expression analysis have been
well optimized in several plant species, such as Arabidopsis [9], rice [25], maize [26], soy-
bean [11,27], tobacco [28], Chinese cabbage [29] and strawberry [30]. In this study, the
enzyme components (Cellulase and Macerozyme), buffer recipes (W5 solution) and the
procedure used in the T. fournieri protoplast isolation and transformation are similar to
those used in Arabidopsis and maize [9,26]. In contrast, additional enzymes are required for
the protoplast isolation from other species such as soybean, which requires the addition
of pectolase Y-23 [11] and Chirita pumila, which requires the addition of pectinase [31].
In addition, it was reported that soybean protoplasts tend to aggregate in W5 solution,
hindering the subsequent plasmid transformation [11]. However, we did not observe such
a phenomenon when preparing T. fournieri protoplasts. In this study, the subcellular local-
ization analysis of transcription factors and the measurement of luciferase activity have
been successfully performed using T. fournieri protoplasts. The high-quality protoplasts and
high transformation rate achieved by this optimized protocol would facilitate experiments
that require protoplasts, such as the ChIP [12,32], Co-IP [13], BiFC [33] as well as the newly
available technology such as single-cell RNA sequencing [31]. All of these are a largely
unchartered area of T. fournieri. Taken together, we optimized a convenient protocol for
high efficiency transformation of T. fournieri protoplasts, which would be valuable for
further investigation of the function of important genes using transient expression.

4. Materials and Methods
4.1. Plant Materials

T. fournieri cultivar “XJ001” (Figure S1) was grown in the greenhouse, at 25 ◦C, under
a 16/8 h (light/dark) condition, with a light intensity of 120–150 µmol/m2/s.

4.2. Protoplast Isolation and Transformation

Full protocol can be found in the supplementary protocol. Briefly, healthy leaves from
45–60-days-old T. fournieri plants were used for protoplast isolation. The leaf epidermis
was gently removed by adhesive tape and digested in 10 mL enzyme solution containing
different combinations of Cellulase (R10 or RS, Yakult, Tokyo, Japan) and Macerozyme
(Yakult, Tokyo, Japan) for 1–5 h. After enzyme digestion, the mixture was filtered through
a 40 µm cell filter and transferred to a 15 mL conical tube. Then, the protoplasts were
collected by centrifugation at 150× g for 2 min and gently washed twice with 10 mL W5
solution. After the final wash, the protoplasts were resuspended in 10 mL W5 solution
and placed on ice for 30 min for the sedimentation of the protoplasts. The supernatant was
then removed, and 1 mL MMG solution was added. The concentration of protoplast was
counted with a hemocytometer under a light microscope. About 2 × 104 protoplasts (in
100 µL) were mixed with 10 µg plasmid and an equal volume of 40% PEG4000 (or PEG3350,
PEG6000, PEG8000) solution and then incubated for 1–15 min in a 2.0 mL round-bottom
microcentrifuge tube. The reaction was stopped by adding 1 mL W5 solution. Protoplasts
were collected by centrifugation at 150× g for 2 min and washed by 1 mL W5 solution once.
Then, protoplasts were resuspended in 1 mL W5 solution and transferred to a new 2.0 mL
tube. The tubes were incubated horizontally in dark, at 25 ◦C, overnight.

4.3. Luciferase Activity Measurement

A 48 bp mini 35S promoter was synthesized and cloned between the PstI and BamHI
restriction sites of the pGreenII 0800 vector (Figure S2) [14] to generated the mini-35S:
Luciferase (m35S:LUC) vector. The full length of 35S promoter from pGreen-35S:GFP
(35S:GFP) binary vector (Figure S3) [34] was amplified and cloned between the KpnI and
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XhoI sites of m35S:LUC to generate the 35S:LUC vector. The Renilla (Ren) reporter gene
driven by the 35S promoter in m35S:LUC or 35S:LUC was used as the internal control
for normalization. T. fournieri protoplasts were prepared, transfected and cultured as
described above. Relative LUC/Ren activities were measured using the Dual Luciferase
Reporter Assay System (Promega, Madison, USA) according to the user manual. The
data represented the averages of five biological replicates. All primers used in vector
construction are listed in Table S1.

4.4. Sub-Cellular Localization

Full-length TCP CDSs, including TfTCP6, TfTCP9, TfTCP15, AtTCP1, TfCYC2 and
TfCYC3 without stop codon were cloned into 35S:GFP binary vector (Figure S3) [34] for
expression of the C-terminal GFP fusion proteins. 35S:TfTCP8-GFP and 35S:TfTCP13-GFP
were from previous studies [17]. Primers were listed in Table S1. The resulting 35S:TCP-GFP
vectors were transformed into T. fournieri protoplasts as described above. The GFP signals
were further detected using a laser scanning confocal microscope (OLYMPUS IX83).

4.5. Phylogenetic Tree Construction

The Arabidopsis TCP amino acid sequences were downloaded from the TAIR database,
while the TfTCPs were from previous reports [17]. The amino acid sequences of TfCYC2
and TfCYC3 were downloaded from NCBI under the accession LC102287 and LC102288,
respectively. TCP alignment and neighbor-joining phylogenetic tree construction were
performed using the online tool, Clustal Omega (https://www.ebi.ac.uk/Tools/msa/
clustalo, accessed on 25 March 2022). The tree was further processed by the iTOL software
(http://itol.embl.de, accessed on 27 March 2022).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11162106/s1, Figure S1. Photos showing the torenia cultivar
“XJ001” used in this study; Figure S2. The plasmid map of pGreenII 0800 vector; Figure S3. The
plasmid map of pGreen-35S: GFP vector; Table S1. Primers used in this study; Supplementary
protocol for the isolation and transformation of torenia protoplasts.
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