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Ridge-furrow with film mulching (RFM) increases grain yield by enhancing nutrient uptake and biomass accu-
mulation in monoculture systems. However, its effects on transformation of phosphorus (P) concentration in
rhizosheath soil and its role in yield enhancement in maize-soybean intercropping systems under acidic soil
conditions, where low P availability in soil limits productivity, remain unclear. A 4-year field experiment with
four different treatments was conducted to investigate the effects of film mulching on grain yield, root traits, P
concentrations in rhizosheath soil, P-solubilising microorganisms (PSMs) and P-cycling functional genes in a
maize-soybean intercropping system. The four treatments given were as follows: ridge-furrow without film
mulching at 0-kg P ha™! (CK), ridge-furrow without film mulching at 90-kg P ha™! (P90), RFM at 0-kg P ha™?
(FM) and RFM at 90-kg P ha™! (P90 + FM). The results showed that FM considerably enhanced seed yield, P
uptake, root length, concentration of plant-available P in rhizosheath soils, acid phosphatase activity and Al-
bound P in maize and soybean. FM remarkably reduced the diversity of maize rhizosheath PSMs, as indicated
by a lower Shannon index. Permutational multivariate analysis revealed that FM notably altered the composition
of rhizosheath PSMs in both the crops. Furthermore, FM notably increased the abundance of functional genes
responsible for organic-P mineralisation, inorganic-P solubilisation, P-starvation response regulation and P
transport in rhizosheath soils of maize and soybean. Structural equation modelling demonstrated that FM
enhanced P transformation in rhizosheath soils, leading to increased concentrations of plant-available P,
improved root morphology and better P uptake—ultimately contributing to higher maize and soybean grain
yields in the maize—soybean intercropping system. In conclusion, RFM considerably improved maize and soybean
productivity in acidic soils by promoting P transformation, stimulating root growth and increasing rhizosheath
PSM abundance as well as increased expression of their P-cycling functional genes. These findings highlight RFM
as a sustainable cultivation practice for achieving high grain yield and P-acquisition efficiency by enhancing
plant-microbe interactions in maize-soybean intercropping systems.

1. Introduction

Maize and soybean, two of the most important staple food crops
worldwide, play a crucial role in ensuring food security and promoting
sustainable agricultural development (Li et al., 2023a; Yang et al.,
2022a). Maize-soybean intercropping is a widely adopted farming
practice in China. It is practiced to improve land-use
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efficiency—reflected in the land equivalent ratio (LER)—as well as seed
yield and resource-use efficiency, including nutrient and water uti-
lisation (Nasar et al., 2023; Shen et al., 2023; Xu et al., 2020). A global
meta-analysis reported an average LER of 1.32 for maize-soybean
intercropping, indicating a considerable land-sparing potential for two
of the major food crops globally (Xu et al., 2020). However, low con-
centrations of plant-available phosphorus (P) in South China’s acidic
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soils remains a key limiting factor for crop yield, particularly for maize
(Luo et al., 2024) and soybean (He et al., 2019; Zhang et al., 2024).
Although large quantities of P fertiliser are applied to farmland annu-
ally, much of it becomes fixed in the soil, resulting in a low P-utilisation
rate (15 %-30 %) (Veneklaas et al., 2012). Furthermore, using excessive
P fertiliser not only accelerates the depletion of non-renewable P re-
serves but also harms the environment considerably (Zou et al., 2022).
Therefore, achieving high yield performance while ensuring sustainable
use of P fertiliser in maize-soybean intercropping systems is a crucial
requirement for maintaining sustainable agriculture in P-limited areas
worldwide, including South China.

Ridge-furrow with film mulching (RFM) has been recognised as a
sustainable management practice to improve crop yield in monoculture
systems, including maize (Zhang et al., 2025) and soybean (Liao et al.,
2022a, 2022b), particularly in arid and semi-arid regions (Liao et al.,
2022b; Zhang et al., 2021). Compared with traditional flat cultivation
with mulching, RFM enhances rainwater harvesting; improves soil
moisture and water-use efficiency and ultimately increases yield of
maize (Zheng et al., 2021), wheat (Liu et al., 2023) and soybean (Liao
et al., 2022b). Although South China experiences abundant rainfall,
seasonal droughts are common from July to October—during the
reproductive period of crop—characterised by low rainfall, high tem-
peratures and rapid evaporation (Yue et al., 2023). Unlike prolonged
droughts, seasonal droughts are short-term, fast-developing and
demonstrate clear spatiotemporal patterns (Song et al., 2020). There-
fore, evaluating the impact of RFM on crop productivity in mai-
ze-soybean intercropping systems is essential for improving yield in this
region.

P deficiency is a major factor that limits crop productivity (He et al.,
2017; Zhang et al., 2024). In China, ~70 % of the soils are P-deficient.
Despite the widespread application of P-based fertilisers, low utilisation
rates persist owing to P fixation by soil particles (Lambers, 2022).
Moreover, the overuse of P fertilisers accelerates the depletion of
non-renewable P reserves and leads to environmental degradation (Zou
et al., 2022). Therefore, enhancing P availability in soils and improving
P uptake by plants have become a crucial research focus in agriculture
(Ma et al., 2025). Intercropping maize with legumes, such as peanuts,
increases maize yield and promotes P transformation in soils (Yang
et al., 2022b). Some studies have reported that RFM improves the mi-
crobial microenvironment in soils (Huo et al., 2017). RFM can promote
maize root growth, influence root exudation and alter the composition
of rhizosphere microbial communities (Li et al., 2023c). P trans-
formation in rhizosheath soils is closely associated with
phosphate-solubilising microorganisms (PSMs), which enhance P
availability by solubilising inorganic mineral phosphates through
exuded carboxylates (He et al., 2025; Lambers, 2022) and by mineral-
ising organic P compounds (Dodd and Sharpley, 2015; Raguet et al.,
2023), thereby improving P uptake by plant (Cheng et al., 2023; Para-
stesh et al., 2019; Rawat et al., 2021). However, plastic film mulching
has been demonstrated to reduce the abundance of P-cycling microbial
functional genes in maize (Zhang et al., 2023). Despite this, the effects of
RFM on P transformation in rhizosheath soils, PSM composition,
P-cycling functional genes and their inter-relationships in mai-
ze-soybean intercropping systems remain poorly understood.

In summary, RFM remarkably enhances crop yield by reducing water
evaporation, minimising nutrient losses and promoting P uptake in
monoculture systems (Liao et al., 2022b; Zhang et al., 2025; Zheng et al.,
2021). However, its application in maize-soybean intercropping sys-
tems has not yet been reported and its impact on yield enhancement and
P transformation in rhizosheath soils remains unexplored. This study
aimed to investigate the effects of RFM on P transformation in rhi-
zosheath soils that is mediated by the P-cycling microbial community in
a maize-soybean intercropping system. The goal was to offer insights
into improving P-use efficiency and seed yield in intercropping systems.
The following hypotheses were tested: (1) RFM further increases seed
yield compared with non-film mulching by promoting root growth,
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thereby enhancing P uptake and ultimately boosting seed production.
(2) RFM alters the composition of PSMs to enhance P transformation in
rhizosheath soils and increase concentration of plant-available P.

2. Materials and methods
2.1. Experiment site

This experiment was conducted in Lianxing Village, Jichang Town-
ship, Xiu District, Anshun City, Guizhou Province (106°5'59'E,
26°6'29"N) in 2020. The soil type at the test site was classified as Ferrisol
soil, containing 28 % sand (0.02-2 mm), 34 % silt (0.02-0.002 mm) and
38 % clay (<0.002 mm). The basic chemical properties of the surface
soil layer (0-20 cm) were as follows: pH = 4.54, organic carbon
= 17.06 g/kg, alkali-hydrolysed nitrogen = 126.73 mg/kg, resin
P = 0.92 mg/kg and available potassium = 159.50 mg/kg. The experi-
ment started in 2020, with the planting period spanning from April to
October each year. The land remained uncultivated during the
remaining months. The mean temperature varied from 20.9°C to 22.7°C
while the precipitation varied from 408 to 1065 mm during the crop
growth season from 2020 to 2023.

2.2. Experimental design

A randomised split-plot experimental design (film mulching x P
application) was used in this field study. Only maize-soybean inter-
cropping systems were included. Ridge-furrow with black film mulching
was applied in the maize-soybean intercropping system (Fig. S1). Based
on the method of Yang et al. (2022), two P application rates were used:
0- and 90-kg P ha™L. Single superphosphate was used as the P fertiliser.
Urea was applied as the nitrogen fertiliser at a rate of 150-kg N ha™?,
50 % of which was applied before sowing and the rest at the maize
silking stage. Four treatment combinations were established: mai-
ze-soybean intercropping with ridge-furrow and black film mulching at
0- (FM) and 90-kg P ha~! (P90 + FM) and maize-soybean intercropping
with ridge-furrow but without film mulching at 0- (CK) and 90-kg P ha!
(P90). Each treatment was replicated three times, with each plot
measuring 60 m? (6-m wide x 10-m long). The maize and soybean va-
rieties used were Jinyu 908 and Fendou 97, respectively. The inter-
cropping pattern consisted of two rows of maize intercropped with two
rows of soybean. The row spacing was kept 30 cm (with 20 cm between
plants) for maize and 40 cm (with two plants per hole) for soybean. The
spacing between the maize and soybean rows was 60 cm. Planting
densities in the intercropping system were 50,000 plants ha~! for maize
and 100,000 plants ha™! for soybean. When the seedlings attained a
height of 3-5 cm, thinning and replanting were performed. All other
field management practices followed local farming practices.

2.3. Sample collection in 2022 and 2023

Plant samples were collected 106 days following sowing during the
grain-filling stage of soybeans (R5) and the early grain-filling stage of
maize (R2) in the 2022 and 2023 seasons, while soil samples were
collected in the 2023 season. Five maize plants (from five holes) and 10
soybean plants (from five holes) were collected from each plot. A shovel
was used to excavate the plant roots within a 20 x 20 x 20-cm soil block.
Loose soil was shaken off, while the soil adhering to the root surface was
considered rhizosheath soil (Pang et al., 2017). The rhizosheath soil was
carefully brushed off. The soil samples from the five maize and 10
soybean plants from the same plot were mixed to obtain a single soil
sample that was further divided into two portions: one stored at —80 °C
for metagenomic analysis and the other used for determining P con-
centrations in the soil as well as acid phosphatase activity. Following
rhizosheath soil collection, roots were gently washed and scanned using
a flatbed scanner (Epson PV850 Pro, Epson Corporation, Long Beach,
CA, USA). The root parameters, such as total length, surface area,
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volume and average diameter, were analysed using WinRHIZO 2019 Pro
software (Regent Instruments Inc., Quebec, Canada). Next, the scanned
roots were dried at 75 °C for 48 h, ground into fine powder and used to
determine the P concentration, following the method of He et al. (2019).
At the time of crop maturity, a 2 x 2-m subplot (4 m?) was harvested
from each plot in 2022 and 2023 to measure seed weight and calculate
seed yield.

2.4. Determination of P concentrations in the rhizosheath soil and acidic
phosphatase activity

The collected rhizosheath soil was air-dried and used to determine P
concentration in the soil sample. Plant-available soil P (Olsen-P) was
extracted using NaHCO3, and P concentration was measured using the
molybdenum blue colorimetric method (Olsen et al., 1954). Concen-
tration of P in the soil—in the form of Fe-P, Ca—P, Al-P and occluded P
(O-P)—were determined according to the protocol described by Hedley
et al. (1982). Phosphatase activity in soil was measured using the
96-well microplate method with reagent kits provided by Suzhou Greis
Biological Co., Ltd., following the manufacturer’s instructions. Plant
shoots were oven-dried at 75 °C for 48 h, weighed and finely ground to
determine the P concentration. Samples were digested with sulphuric
acid and hydrogen peroxide, and the P content was determined using the
molybdenum-antimony colorimetric method (He et al., 2019).

2.5. Metagenomic analysis of P-solubilising microbes in rhizosheath soil
and their P-cycle genes

One gram of rhizosheath soil was used to extract total DNA following
the instructions of the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross,
GA, USA). DNA concentration was measured using a NanoDrop 2000
(Thermo Fisher Scientific, Wilmington, NC, USA), and DNA purity was
assessed via 1 % agarose gel electrophoresis. Metagenomic libraries
were sequenced on the Illumina NovaSeq platform (PE150), generating
an average of 10 GB of raw data per sample.

Raw FASTQ data were subjected to quality control using Fastp (ver.
0.20.0, https://github.com/OpenGene/fastp). All unaligned sequences
were removed, and only paired-end reads were retained. Based on the
high-quality sequences, single-sample assemblies were performed using
MEGAHIT to obtain longer contigs. Gene abundance was quantified by
aligning the clean reads from each sample to a non-redundant gene set
using Bowtie 2 software. Then, the non-redundant gene set was anno-
tated against multiple reference databases using DIAMOND to identify
taxonomic and functional information. Combined with the gene abun-
dance table, species-level taxonomic and functional abundance data
were obtained. The Shannon index was calculated using the method
described by Ortiz-Burgos (2016).

Seventy-two P-cycle-related genes and their corresponding KEGG
Orthology numbers were retrieved, as described by Liu et al. (2024).
These genes were classified into four categories based on their roles in
the soil P cycle. Herein, microorganisms harbouring soil P-cycling genes
were defined as P-solubilizing microorganisms (PSMs).

2.6. Statistical analysis

Data were analysed using two-way ANOVA (FM and P supply rate))
in the GenStat 19.0 statistical package (VSN International Ltd., Roth-
amsted, England) to assess the abundance of PSMs in rhizosheath soil
and P-cycling microbial genes. Duncan’s post hoc test was used to
determine significant differences in the P content in soil, transcripts per
million (TPM) (normalised abundance as transcripts per million) values
of P-cycling functional genes, PSM diversity, root morphology, P accu-
mulation and grain yield upon providing different treatments (P = 0.05).
Three-way ANOVA (FM, P supply rate (P) and year (Y)) was conducted
to analyse seed yield, P uptake and root traits of maize and soybean. R
software (version 4.4.2) was used to perform permutation multivariate
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analysis of variance (PERMANOVA, vegan), random forest model anal-
ysis (randomForest) and partial least squares path modelling (plspm).
Figures were generated using the online platform ChiPlot (https://www.
chiplot.online) when needed. Circular heat maps displayed the stand-
ardised abundance (Z-score) of P-cycling functional genes.

3. Results
3.1. Effects of FM on the P concentration in rhizosheath soil

FM, P application and their combination considerably affected P
concentrations in the soil (Fig. 1 and Table S1). In the soybean rhi-
zosheath soil, the concentration of plant-available P increased by 193 %,
47 % and 224 % under the P90, FM and P90 + FM treatments, respec-
tively, compared with that under the CK treatment, while Al-P increased
by 207 %, 54 % and 270 %, respectively. In the maize rhizosheath soil,
the concentration of plant-available P increased by 188 %, 38 % and
329 %, respectively, and acid phosphatase activity increased by 63 %,
187 % and 149 %, respectively. In the soybean rhizosheath soil, when
compared with the CK treatment, the P90 and P90 + FM treatments each
increased total P by 32 % and acid phosphatase activity by 250 % and
321 %, total inorganic P by 69 % and 65 %, Fe-P by 65 % and 53 %, O-P
by 40 % and 32 % and Ca-P by 134 % and 143 %, respectively. In the
maize rhizosheath soil, the P90 and P90 + FM treatments increased total
P by 43 % and total inorganic P by 54 % and 60 %, respectively. Al-P
increased by 145 % and 255 %, and Fe-P increased by 63 % and 79 %,
respectively. In addition, FM significantly (p < 0.05) increased organic P
in the soybean rhizosheath soil by 24 % but significantly (p < 0.05)
decreased Ca-P in the maize rhizosheath soil by 44 %. When compared
with the CK treatment, the proportions of Al-P and organic P increased,
whereas the proportion of O-P decreased in the soybean rhizosheath
soil. Furthermore, in the maize rhizosheath soil, the proportions of Al-P
and Fe-P increased, while those of O-P, Ca-P and organic P decreased.

3.2. Effects of FM and P supply on PSM composition in rhizosheath soil

FM, P supply and their combination remarkably affected the di-
versity (Shannon index) and composition of microbial communities in
the rhizosheath soil (Fig. 2). The Shannon index of P-solubilising bac-
teria in the maize rhizosheath soil was highly influenced by FM, while
the Shannon index of P-solubilising fungi in the soybean rhizosheath soil
was notably affected by P application. P application considerably
reduced the Shannon index of P-solubilising bacteria in the soybean
rhizosheath soil by 6.7 % (P90) and 9.0 % (P90 + FM) and of P-sol-
ubilising fungi by 27.8 % (P90 + FM) (p < 0.05) (Fig. 2a). Meanwhile,
FM significantly decreased the Shannon index of P-solubilising bacteria
in the maize rhizosheath soil by 4.8 % at PO and 3.6 % at P90 (p < 0.05).

Distinct differences in the communities of P-solubilising bacteria and
fungi were observed in the maize and soybean rhizosheath soils among
the four treatments groups (Fig. 2b). Principal coordinates analysis
revealed that the first two axes explained 60 % and 41 % of the variation
in bacterial and fungal communities in the soybean rhizosheath and
58 % and 47 % in the maize rhizosheath, respectively. PERMANOVA
revealed that P application and its interaction with FM remarkably
affected P-solubilising bacteria in soybean and fungi in maize (Fig. 2b).

At the phylum level, the dominant P-solubilising bacteria in the
maize and soybean rhizosheath soils included Pseudomonadota, Acid-
obacteriota, Actinomycetota, Chloroflexota and Bacteroidota (Fig. 2c). In
soybean, nine of the top 10 P-solubilising bacterial phyla were notably
affected by P application. By contrast, in maize, eight of the top 10 P-
solubilising bacterial phyla were affected by FM (Fig. 2¢ and Table S2).
Only three fungal phyla were identified in the rhizosheath soils of both
the crops, and P application highly affected their relative abundance
than by FM (Table S2). At the genus level, in the soybean rhizosheath,
the relative abundances of Rhodanobacter, Dyella, Phenylobacterium,
Rhizobium, Trinickia, Mesorhizobium and Rudaea considerably decreased


https://github.com/OpenGene/fastp
https://www.chiplot.online
https://www.chiplot.online

Y.-M. Wang et al.

(a) | I soybean [ Maize (b) “
¢ e}
. | FM:ns. FM: ns. w5 Mo FM: ¢o¢
< 145 p. see P: #ee £ P: #ee P: eee
2 =
% 12} FMxP:ns, FMxP: ns. ém FM*P: ns. FMxP: ¢¢¢
[ 2 a a
% S0 a
£ £ b
= 220l ¢ b
2 C
: d
E 0

S0

2
3
‘

407!

Relative proportion (%)

N N
[~ o~
o ~ < 3 S ~ S
~ [ ~ .
F & & g F & & &

& &

(©

Soil & Tillage Research 256 (2026) 106883

-~

d)=
038 ( )f 4000
= FM: ** FM: ns. g FM: * FM: ¢¢¢
';,0 % P:* P: ns. S 200 | aad P: ns.
2 | FMxP:ns. FMx*P: ns. z FMx*P: ns. FMxp: *
%():‘ a a a é 2000
g ab 2
= 8
g 2
£ 020 S 1000
3 i
o
2
Z

Maize

Fe-P
Al-P

800

Relative proportion (%)

Inorganic phosphorus fractions (mg/kg)

>
'~
>

$

>
&
&

&

=

>
< g

Fig. 1. Changes in the concentrations of (a) total soil P, (b) available soil P and (c¢) organophosphorus as well as (d) acid phosphatase activity, inorganic soil P
fractions and their proportions in the rhizosheath soils of (e, f) soybean and (g, h) maize with and without film mulching (FM) under 0- (CK) and 90-kg P ha~! (P90)
supply in maize-soybean intercropping system. ns indicates no significance. * P < 0.05, ** P < 0.01 and *** P < 0.001. Different lowercase letters indicate sig-

nificant differences among treatments (Duncan’s test, P < 0.05).

upon P application, whereas those of Ramlibacter and Occallatibacter
notably increased. FM considerably reduced the relative abundances of
Sphingomonas, Dyella, Rhizobium and Paraburkholderia but increased
those of Rudaea and Ramlibacter (Fig. 2c and Table S3). In the maize
rhizosheath, P application considerably decreased the relative abun-
dances of Dyella, Trinickia, Rhodanobacter, Amycolatopsis, Actinocrinis
and Catenulispora but increased those of Occallatibacter, Sphingomonas,
Edaphobacter and Mucilaginibacter. FM notably reduced the relative
abundances of Bradyrhizobium, Sphingomonas, Dyella, Trinickia, Para-
burkholderia and Mucilaginibacter but increased those of Rhodanobacter
(Fig. 2c and Table S3). Among P-solubilising fungi, the relative abun-
dance of the genus Ambispora notably increased in soybean but
decreased in the maize rhizosheath soil upon P application (Fig. 2c and
Table S4), while the relative abundance of Colletotrichum notably
decreased in soybean but increased in maize under the FM treatment.

3.3. Effects of FM and P application on the P-cycling functional genes

Cluster analysis showed that the abundance of P-cycling functional
genes in the soybean rhizosheath soil was more affected by FM than by P
application, whereas in the maize rhizosheath soil, P application had a
greater effect than FM (Fig. 3a). When compared with the CK treatment,
the TPM values of the four P-cycling functional gene communities in the
maize and soybean rhizosheath soils were significantly increased by FM
and significantly reduced by P application (Fig. 3b). Furthermore, the

interaction between FM and P supply did not considerably affect the
TPM values of the four P-cycling gene communities.

3.4. Correlations among P-solubilising microbes, P-cycling functional
genes and P concentrations in soil

Mantel correlation analysis revealed that P-solubilising bacteria in
the soybean rhizosheath soil were notably affected by the total P, plant-
available P in soil, acid phosphatase, Al-P, Fe-P, O-P and Ca-P, while P-
solubilising fungi were considerably affected by total P, plant-available
P in soil, acid phosphatase, Al-P, Fe-P and Ca-P. In the maize rhi-
zosheath soil, P-solubilising bacteria were notably affected by total P,
plant-available P in soil, acid phosphatase, Fe-P and Ca-P, while P-
solubilising fungi were notably affected by total P, plant-available P in
soil, acid phosphatase, Fe-P and Ca-P (Fig. 4a). The random forest
model revealed that the microbial phyla contributing (mean squared
error (MSE) > 6 %) to the concentration of plant-available P in soil in
the soybean rhizosheath were Nitrospirota, Gemmatimonadota, Pseudo-
monadota and Candidatus Dormibacteraeota. In maize, Actinomycetota
and Mucoromycota considerably contributed (Fig. 4b).

In soybean rhizosheath, plant-available soil P concentrations showed
significant positive correlations with acid phosphatase, Al-P, Fe-P, O-P
and Ca-P (Fig. 5a). Acid phosphatase was significantly positively
correlated with Al-P, Fe-P, O-P and Ca-P. In the maize rhizosheath soil,
plant-available soil P concentrations were significantly positively
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Fig. 2. Changes in the (a) Shannon index and (b) composition of P-soluble bacteria and fungi. Relative abundances of P-soluble bacteria and fungi at the phylum and
genus levels of the rhizosheath soils of (c) soybean and (d) maize with and without film mulching (FM) under 0- (CK) and 90-kg P ha~! (P90) supply in the mai-
ze-soybean intercropping system. ns, no significance. *P < 0.05, **P < 0.01 and *** P < 0.001. Different lowercase letters indicate significant differences among

treatments (Duncan test, P < 0.05).

correlated with Al-P, Fe-P and Ca-P (Fig. 5a). Mantel analysis further
indicated that in the soybean rhizosheath soil, genes involved in
inorganic-P solubilisation and organic-P mineralisation were signifi-
cantly correlated with concentrations of total P, plant-available P in soil,
organic P, Al-P, Fe-P and Ca-P (Fig. 5a). In maize, organic-P mineral-
isation genes were significantly correlated with the concentrations of
plant-available P in rhizosheath soil, O-P and Ca-P (Fig. 5a). Random
forest analysis identified the P-cycling functional genes phoN, pqqC and
phnP (MSE > 6 %) in soybean and TPS and pepM (MSE > 6 %) in maize
as the key contributors to plant-available soil P concentrations in their

respective rhizosheath soils (Fig. 5b). Among these, P-cycling gene
communities involved in inorganic-P solubilisation contributed the most
to plant-available soil P concentrations in the rhizosheath of maize and

soybean.

3.5. Effects of FM and P application on root morphological traits and

yield

Soybean root length, root surface area, root diameter and root vol-

ume under FM were 25.4 %,

46.8 %, 6.7 % and 47.6 % higher,
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respectively, than without FM across two P supply rates and 2 years
(Fig. 6 and Table S5). Meanwhile, soybean root length, root surface area,
root diameter and root volume under P application were 41.6 %,
35.8 %, 13.4 % and 53.0 % higher, respectively, than without P appli-
cation across both managements (with and without FM) and years.
Maize root length, root surface area and root volume with FM were

34.2 %, 17.3 % and 18.5 % higher, respectively, than without FM across
two P supply rates and 2 years, respectively (Fig. 6 and Table S6). Maize
root length, root surface area, root diameter and root volume with P
application were 15.5 %, 19.4 % and 15.8 % higher, respectively, than
without P application across both the managements and years.
Soybean seed yield and P uptake (P content) were 45.1 % and 30.9 %
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higher with FM, respectively, than without FM across two P supply rates
and 2 years (Fig. 7 and Table S5). Soybean seed yield and P uptake were
79.1 % and 35.5 % higher with P application, respectively, than without
P application across both the managements and years. Maize seed yield
and P uptake were 23.8 % and 50.3 % higher with FM, respectively,
than without FM across two P supply rates and 2 years (Fig. 7 and
Table S5). Maize seed yield and P uptake were 53.7 % and 116.7 %
higher with P application, respectively, than without P application
across both the managements and years.

The partial least squares structural equation model (PLS-SEM)
demonstrated that FM considerably affected soil P fractions, P accu-
mulation and grain yield in the maize-soybean intercropping system
(Fig. 8). The concentration of plant-available P in the rhizosheath soil
was positively correlated with that of soybean (R% = 0.83, p < 0.001)
and maize (R% = 0.66, p < 0.001) seed yields (Fig. 8b and d). The model
further shows that RFM considerably increased the plant-available soil P
concentration by enhancing the transformation of inorganic and organic
P components, promoting root growth and thereby increasing P uptake
and seed yield.

4. Discussion
4.1. Effects of RFM on P concentrations in rhizosheath soil

P, one of the three major soil nutrients, is highly important for crop
yield and productivity (Chen et al., 2025; McDowell et al., 2024). As
expected, the total soil P concentration was mainly affected by P
application, with no notable effect observed upon FM application
(Fig. 1a). The total P content in the rhizosheath soil following P appli-
cation for the four consecutive years could be attributed to the soil’s
fixation of the applied P fertiliser (Li et al., 2023b), resulting in low P-use
efficiency (Li et al., 2023b). The increase in total soil P upon P appli-
cation was mainly related to increases in Ca-P, Al-P and Fe-P, indi-
cating that surplus P was primarily stored as Al-P. We found that the
concentration of organic P in the soybean rhizosheath soil considerably
increased upon FM application than without FM, whereas P application

considerably reduced organic-P concentration, highlighting the differ-
ence in effects of FM and P application on the organic-P concentration in
soybean rhizosheath soil. The increase in organic P could be associated
with FM-induced enhanced rhizodeposition (Hallama et al., 2022).
Herein, it was observed that higher P supply could stimulate acid
phosphatase activity, thereby promoting organic-P mineralisation
(Raguet et al., 2023) (Fig. 1d). This effect was associated with a
reduction in the organic-P concentration in the soybean rhizosheath soil.

As expected, P fertiliser application notably increased the concen-
tration of plant-available P in soil, which is consistent with previous
studies (Chen et al., 2023). In addition, FM application considerably
increased the plant-available soil P concentration in the rhizosheath of
maize and soybean (Fig. 1b). One possible explanation for this is that FM
considerably enhances acid phosphatase activity, which converts un-
available organic P into plant-available soil P (Raguet et al., 2023). This
reason was validated by the positive correlation between acid phos-
phatase activity and plant-available soil P in the rhizosheath (Fig. 4a). In
addition, FM helped reduce P leaching along with rainwater, minimising
P loss along with surface runoff, thereby resulting in higher
plant-available soil P content under FM than under treatments without
FM (Xu et al., 2016). However, P leaching was relatively low. Finally,
FM increased the soil temperature and water content (Liao et al.,
2022b), both of which were suitable for the growth of PSMs, such as
bacteria and fungi, which convert unavailable soil P into plant-available
forms by enhancing the abundances of microbial P-cycling genes,
thereby increasing rhizosheath plant-available soil P concentration.
However, more research was required to clarify the roles of PSMs in P
transformation.

4.2. Effects of RFM on PSMs and its role in P transformation

Rhizosheath soil PSMs play a crucial role in regulating the soil’s P
cycle, promoting plant growth and sustaining agroecosystem health (Shi
et al., 2024). Soil PSMs are highly sensitive to P input and management
practices and are the key players in regulating plant-available soil P
concentration (Prakash et al., 2018). Herein, P application considerably
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reduced the diversity (Shannon index) of PSMs (bacteria and fungi) in
the soybean rhizosheath, while it only affected the diversity of P-sol-
ubilising bacteria in the maize rhizosheath (Fig. 2a). This difference
indicates that the responses of PSMs to FM and P application are
species-dependent in the maize-soybean intercropping system. One
possible explanation could be that the soybean was fully covered,
whereas the maize was partly covered, which led to different effects on
the water content of root soil between maize and soybean, thereby
affecting the composition of the PSMs. However, this needs further
investigation. Changes in root exudates can alter microbial composition
(Lamichhane et al., 2024; Zhalnina et al., 2018), suggesting that the
differential responses of rhizosheath PSMs to FM and P application can
be linked to changes in root exudates, necessitating further investiga-
tion. Changes in soil water content caused by FM (Zhang et al., 2025)

can affect the composition of soil microbial communities (Dtugosz et al.,
2024). The constructions of ridge-furrow systems alter physical traits of
soils, such as bulk density, and chemical characteristics, such as soil
organic matter, through soil redistribution, thereby affecting microbial
communities, including PSMs (Philippot et al., 2024). However, further
studies are needed to clarify the interactions between soil properties and
microbial communities. Bacterial and fungal PSMs are significantly
positively correlated with the concentration of plant-available P in rhi-
zosheath soil (Fig. 4a), underscoring their important roles in trans-
forming P concentrations in soil. In addition, the dominant microbial
phyla contributing to plant-available P in rhizosheath soil were Nitro-
spirota in soybean and Actinomycetota in maize (Fig. 4b).

Microbial functional genes involved in soil P cycle were the key
drivers of P transformation, with their expression levels directly linked
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to the intensity of each P-cycle process (Dai et al., 2020). Four types of
microbial functional gene communities were involved: organic-P min-
eralisation, P-starvation response regulation, inorganic-P solubilisation
as well as P absorption and transport systems (Hu et al., 2019). Herein,
four consecutive years of FM treatment to the maize-soybean inter-
cropping system considerably increased the abundances of all four mi-
crobial functional gene types involved in the soil P cycle in soybean and
those of three types (organic-P mineralisation, P-starvation response and
P absorption and transport) in the maize rhizosheath (Fig. 3b). These
gene abundances were positively correlated with the plant-available soil
P concentration in the crop rhizosheaths (Fig. 5). Genes involved in
inorganic-P solubilisation contributed the highest to the concentration
of plant-available P in rhizosheath soil (Fig. 5b). Specifically, phoN and
phnP (organic-P mineralisation), pgqC and phnP (inorganic-P solubili-
sation) and TPS and pepM (organic-P mineralisation) contributed the
highest (MSE > 6 %) to plant-available soil P concentration in soybean
and maize, respectively (Fig. 5). Genes involved in inorganic-P solubi-
lisation were positively correlated with Ca-P in soybean and maize soils
(Fig. 5a), indicating that Ca—P was the main inorganic-P source mobi-
lised by these genes. This understanding was further supported by the
observed reductions in the Ca-P concentration and proportion in the
rhizosheath soils of soybean and maize (Figs. 1e-1h). Furthermore, FM
reduced the proportion of Fe-P in the soybean rhizosheath soil, which
was associated with the increased abundance of inorganic-P solubilisa-
tion genes induced by FM. This indicates an enhanced soil P cycle,
particularly involving Ca-P, which contributed to the increase in P
concentration in rhizosheath soil.

However, long-term (14 years) P fertiliser application has been re-
ported to reduce the abundance of soil P-cycling functional genes (Liu
et al., 2023). Herein, four consecutive years of P application markedly
reduced the abundance of four types of soil P-cycling genes (except those
related to P absorption and transport) in the maize and soybean rhi-
zosheaths (Fig. 3b). This result indicates that crops could have experi-
enced upregulated soil P-cycling microbial functional gene expression to
cope with P deficiency in the maize-soybean intercropping system.
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However, the regulatory mechanisms underlying the changes in PSMs
are still unknown and further understanding them could advance our
knowledge on plant-microbe interactions related to rhizosheath soil P
transformation in maize-soybean intercropping system.

4.3. Effects of RFM on maize-soybean intercropping productivity

Previous studies have confirmed that RFM is a sustainable manage-
ment practice that improves yield of crops in monoculture systems, such
as maize and soybean, by enhancing nutrient uptake, particularly P
(Liao et al., 2022b; Zhang et al., 2025). We introduced RFM into the
maize-soybean intercropping system (Fig. S1) in South China, where
seasonal droughts frequently occur during the crop reproductive stage
(Yue et al., 2023). Our findings demonstrated that RFM considerably
increased crop productivity in this intercropping system, which was
associated with enhanced P uptake under two P supply rates (Fig. 7).
This increase supported higher biomass production and improved seed
yield by enhancing yield components, such as seed number (He et al.,
2019; Zhang et al., 2024). In addition, we observed that RFM improved
root morphology—including root length, root surface area and root
volume—in maize and soybean, notably enhancing P uptake by
increasing soil exploration (Lynch, 2019). The alleviation of the limiting
effects of P deficiency on root growth was found to be mainly associated
with the FM-induced increase in the concentration of plant-available P
in rhizosheath soil, which promoted P accumulation and ultimately
increased seed yield in the maize-soybean intercropping system.

5. Conclusion

The introduction of RFM in maize-soybean intercropping consider-
ably enhances crop productivity and land-use efficiency compared with
conventional intercropping practices. RFM enhances P concentrations in
rhizosheath soil, promotes root growth in maize and soybean and en-
hances P uptake and accumulation, thereby improving the overall grain
yield in the maize-soybean intercropping system. RFM accelerates P
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transformation in rhizosheath soil by upregulating P-cycling functional
genes and altering the composition of PSMs, leading to an increase in the
concentrations of plant-available P. This study highlights RFM as a
sustainable cultivation practice for achieving high seed yield and P-
acquisition efficiency in maize-soybean intercropping systems in areas
with low levels of plant-available P. This underscores the crucial role of
enhanced plant-microbe interactions derived by RFM in promoting
sustainable P use and yield formation in acidic soils worldwide.
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