Journal of Environmental Management 394 (2025) 127513

Contents lists available at ScienceDirect

Joueaa of
Environmental
“Management

Journal of Environmental Management

e 4

ELSEVIER

journal homepage: www.elsevier.com/locate/jenvman

Research article

Changes in dissolved organic matter chemistry of plateau lakes along
gradients of human activity intensity in Yunnan Province, China

Lei Xu®, Wenjun Zhong b Zetian Liu ¢, Qian Hu?, Xin Xiong®, Jianlin Tang“, Tao Chen“,
Wei Liao ", Aiwen Zhong ™"

2 Jiangxi Provincial Key Laboratory of Wetland Plant Resources Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of
Sciences, Jiujiang, 332900, China

Y Jiangxi Academy of Forestry, Nanchang, 330032, China

¢ Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences,

Jiujiang, 332900, China

4 China Railway Tenth Group of the Fifth Engineering Co., Ltd, Suzhou, 215011, China

ARTICLE INFO

Keywords:

Human activity intensity
Dissolved organic matter
Optical properties
Molecular composition
FT-ICR MS

Plateau lakes

ABSTRACT

Plateau lake systems are highly sensitive indicators and amplifiers of global climate change, while human ac-
tivities are emerging as a growing threat to their ecological health and carbon cycling. As the dominant organic
carbon pool, dissolved organic matter (DOM) plays essential roles in lake biogeochemical cycles and ecosystem
health. However, the impacts of human activities along intensity gradients on DOM chemistry in plateau lakes
remain unknown. Here we quantified human activity intensity (HAI) of nine plateau lakes in Yunnan Province
(China) based on land use/cover data, coupled with DOM characterization using spectroscopic techniques and
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to address these issues. The results
showed that the pronounced spatial heterogeneity in the quantity and quality of DOM, and it was highly asso-
ciated with HAI values across the nine plateau lakes. With increasing HAI values, the dissolved organic carbon,
absorption coefficients at 355 nm, DOM aromaticity, humification degree, abundances of fluorescent compo-
nents, and heteroatom-bearing compounds all significantly increased in plateau lakes. Anthropogenic-induced
nutrient inputs along with allochthonous DOM, shifted the source of autochthonous DOM from submerged
plant degradation to algal and/or phytoplankton metabolisms. This shift further significantly elevated the pro-
portions of heteroatom molecules in DOM, and consequently complicated the organic matter pool in plateau
lakes. We conclude that intensified human activities could significantly alter DOM quantity and quality, and
potentially affect its biogeochemical function in plateau lake systems.

1. Introduction

regarded as sensitive sentinel ecosystems (Zhang et al., 2024b), have the
characteristics of insufficient supply water source, long water renewal

Lakes constitute vital natural resources, occupying 1.8 % of the
global land surfaces (Messager et al., 2016), furnish critical ecosystem
services for human society, and regulate the global carbon cycling and
climate (Woolway et al., 2020; Yao et al., 2023). Since the start of the
20th century, human activities (e.g., urbanization, agricultural pro-
duction, and land exploitation) have significantly affected the structure
and function of lake systems, leading to water quality deterioration,
biodiversity reduction, and phytoplankton blooms globally (Grant et al.,
2021; Ho et al., 2019; Zhang et al., 2024a). Particularly, plateau lakes,
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cycle, and poor anti-interference ability due to their geographical and
climatic conditions, which makes these systems more fragile and
vulnerable to human activities (Lii et al., 2017; Zhang et al., 2024c).
Evidence has confirmed that the ecosystem health and material cycles of
plateau lakes are undergoing serious alterations due to the intensive
anthropogenic impacts (Liu et al., 2017; Ran et al., 2023; Wu et al.,
2021).

Dissolved organic matter (DOM), accounting for about 70 % of
organic carbon pool (Du et al., 2023), plays important roles in food web
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dynamics, carbon cycling, and pollutant migration in aquatic systems
(Lynch et al., 2019), and even has a close relationship with the fresh-
water health (Tanentzap and Fonvielle, 2024). The function, reactivity,
and biogeochemical processes of DOM are largely determined by its
inherent quality and quantity within lakes, which can be impacted by
diverse anthropogenic activities (Dong et al., 2020; Kellerman et al.,
2015). For instance, human-induced eutrophication was considered as
the most severe environmental issue in lakes globally. Excessive nutri-
ents in eutrophic lakes facilitate the production of autochthonous DOM
(e.g., more aliphatic compounds), thereby altering the release pattern of
CO5 and CH4 (Liu et al., 2022; Sun et al., 2021; Xiao et al., 2022). Given
the sensitive ecosystems and serious anthropogenic impacts, the
biogeochemical cycles and ecological function involving DOM may be
more complicated and dynamic in plateau lakes. Therefore, investi-
gating the DOM chemistry and its relationship with human activities in
plateau lakes is essential for advancing the understanding of carbon
cycling and ecosystem health.

The influence of human activities on DOM quality and quantity have
been well investigated in lakes at a global scale, that the DOM chemistry
and biogeochemical processes depend on the disturbance intensity and
types of anthropogenic activity (Dong et al., 2020; Du et al., 2023; Luo
et al., 2022; Williams et al., 2016). For example, agricultural practices
facilitate substantial inputs of terrestrial organic matter into lake sys-
tems and result in the reproduction of phytoplankton, which may pro-
mote the release of autochthonous DOM inversely (Liu et al., 2022).
Alternatively, urbanization with human population growth will intro-
duce extra protein-like and sulfur-containing compounds to lakes
through sewage and industrial wastewater discharges (Shang et al.,
2022). In essence, the chemical composition and characteristics of DOM
are integrally determined by various human activities in lake basins.
However, previous studies predominantly focused on elucidating the
impact of specific anthropogenic patterns (such as urbanization and
distinct land use types) on lake DOM (Du et al., 2023; Williams et al.,
2016), but critically lack an integrated quantification of multivariate
anthropogenic drivers across entire lake watersheds. Therefore, to
determine how DOM reactivity and biogeochemical processes will
respond to anthropogenic interferences in plateau lakes, quantifying the
intensity of human activities at the watershed scale and investigating its
correlation with DOM chemistry is crucially important.

Yunnan Province, which belongs to one of China’s five regions with
the greatest natural lake abundance and has 31 freshwater lakes
exceeding 1 km? in surface area (Liu et al., 2024; Yang et al., 2010). The
lake ecosystems of Yunnan Province are of closed or semi-closed char-
acteristics (rare outflows of lake) and have been significantly affected by
anthropogenic activities (e.g., lake basin development and urbanization
construction), leading to an array of problems such as water level
depression, eutrophication, and biodiversity reduction in the past
several decades (Yu et al., 2020). For instance, Dianchi Lake, ranking as
the sixth largest freshwater lake in China, persistently exhibits moderate
to severe eutrophication states and experiences frequent cyanobacteria
bloom outbreaks (Zhan et al., 2017). The levels of anthropogenic
disturbance differ significantly among these plateau lakes due to the
variations in land cover patterns, population densities, and urbanization
degree. Additionally, the water environment of these plateau lakes can
effectively represent the overall characteristics under the influence of
human activities over a long-time scale, because of their long water
renewal cycles and weak self-purification capacities. Therefore, the
lakes in Yunnan province provided an ideal area to examine how human
activities along intensity gradients impact DOM chemistry in plateau
lakes.

The goal of this study was to clarify the changes in DOM quantity and
quality along human activity intensity (HAI) gradients in nine plateau
lakes of Yunnan Province, China. The HAI values were quantified at the
watershed scale based on land use/cover data. DOM sources, composi-
tion, and characteristics were investigated by Fourier transform ion
cyclotron resonance mass spectrometry (FT-ICR MS) and spectroscopic
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techniques. Multivariate statistical analysis was used to reveal the
relationship and driving forces between human activities and DOM
chemistry in lake systems. Hypothetically, human activities alter DOM
composition and diversity in plateau lakes by increasing terrestrial DOM
inputs and facilitating the production of endogenous DOM. If confirmed,
this alteration should evidence by DOM exhibiting increasingly
allochthonous and autochthonous signatures (e.g., higher aromaticity,
complexity) with intensified human activities. The findings of this study
have important implications for the understanding of the biogeochem-
ical cycles of DOM and the ecosystem conservation and management of
plateau lakes.

2. Materials and methods
2.1. Study area and water sampling

Yunnan Province is situated in southwestern China (21°8-29°15'N,
97°31'-106°11'E) with a subtropical or temperate climate. Nine typical
lakes with surface area greater than 30 km? were selected (Dianchi Lake,
Yangzonghai Lake, Fuxian Lake, Xingyun Lake, Qilu Lake, Yilong Lake,
Erhai Lake, Chenghai Lake, and Lugu Lake) to investigate DOM chem-
istry (Fig. 1). Based on lacustrine morphometric features, six sampling
sites were established per lake, and a total of 54 samples were obtained
about 10 m from the lakeshore during August 2024. Detailed informa-
tion of nine lakes and sampling locations is documented in Table S1.

Surface water samples (approximately 0.5 m deep) were collected
using precleaned Nalgene bottles, transported to the laboratory within 6
h, and processed immediately upon arrival. Each sample was split into
two subsamples: the first subsample was filtered through 0.7 pm pre-
combusted GF/F glass fiber filter (480 °C for 4.5 h), then the filtrates
were acidified to pH of 2 using HCI and maintained at 4 °C until further
measurement. The second subsample was preserved at —20 °C in
darkness and analyzed within two days.

2.2. Data sources and human activity intensity model

2.2.1. Data sources

The primary datasets comprised digital elevation model (DEM) and
land use/cover data. Specifically, the 30 m resolution DEM data, sourced
from the Geospatial Data Cloud Platform of the Chinese Academy of
Sciences (https://www.gscloud.cn/) and used to identify and extract the
lake watershed boundary on the ArcGIS 10.3 platform. Land use/cover
data with a spatial resolution of 30*30 m were acquired from the
Resource and Environment Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/).

2.2.2. Human activity intensity model

Human activity intensity (HAI) refers to the magnitudes of anthro-
pogenic pressures on the regional natural complexes through socioeco-
nomic interventions (Qing et al., 2024). The utilization, transformation,
and exploitation of natural land cover are considered as the mainstay of
human activities, based on that, Xu et al. (2016) proposed a HAI mea-
surement model using the construction land equivalent (CLE) as the
basic measurement unit, which has been widely used in previous re-
searches (Hu et al., 2023; Li et al., 2024). The main principle of this
model is to convert the surface area of different land use/cover into CLE
values according to corresponding conversion coefficients (Table S2),
and then calculated the proportions of total CLE values. The HAI index is
calculated using the following formula:

SCLE

HAI=——
S

n
SCLE = ZSL, * CIl

i=1


https://www.gscloud.cn/
https://www.resdc.cn/

L. Xu et al.

80°T, 90°T. 100°T, 10 120°T 130°E

Journal of Environmental Management 394 (2025) 127513

(1) Dianchi Lake (2) Yangzonghai Lake|(3) Fuxian Lake
50°N : T 6/ .
1
)
40°N "
t
|
30°N I’
1
i
20°N4 I‘ f
¢ |osw 20 3 4w 0153 032565 13 195 |28
f - — — Miles e —— — iles - —
t |(4) Xingyun Lake 5) Qilu Lake 6) Yilong Lake
/ - ; (4) Xingy ®Q (6) g
0 240480 950 1440 1920 2% i Uy
- — —\liles B |
e : vk w0 WS0E s ol
30°01'N
N N
27°U'NA A
0 2 4 8 12 16 0 22545 9 138 18
Wiles o i 5
(8) Chenghai Lake  |(9) Lugu lake
I 4 N
24°0'N
g ‘ { Watershed boundary
. L% Elevation (m)
}N\ g - high : 6220
N
o L)
0. % e A= T R T low : 74 0153 As 9 012625 0080 0T 0
o ————— Hhiles

Fig. 1. Location of nine plateau lakes in Yunnan Province (China). Enlarged figures show the sampling sites in individual lakes, including: (1) Dianchi Lake, (2)
Yangzonghai Lake, (3) Fuxian Lake, (4) Xingyun Lake, (5) Qilu Lake, (6) Yilong Lake, (7) Erhai Lake, (8) Chenghai Lake, and (9) Lugu Lake.

Where HAI is the human activity intensity for each lake basin; Scyf is the
area of construction land equivalent; S is the total surface land area; CI; is
the conversion coefficient of land use/cover type i for construction land
equivalent, and i is the numbers of land use/cover types.

2.3. Analytic methods

2.3.1. Bulk geochemical analysis

Water temperature (WT), dissolved oxygen (DO), electrical conduc-
tivity (EC), pH, and chlorophyll a (Chl a) of water samples were recor-
ded in situ using a portable YSI EXO2 multiparameter water quality
probe (YSI Inc., USA). Total nitrogen (TN) and total phosphorus (TP)
concentrations were measured by corresponding standard spectropho-
tometric method, respectively. Permanganate index (CODyy) was
determined using the KMnO4 oxidation method in acidic conditions.
Concentration of dissolved organic carbon (DOC) was determined via a
TOC-L CPH analyzer (Shimadzu, Japan) using the non-purgeable
organic carbon method (NPOC). Details for the above parameters have
been described in our previous publications (Xu et al., 2024) and the
results are displayed in Table S3.

2.3.2. Spectroscopic measurements and PARAFAC modeling
Ultraviolet-visible absorbance spectra of filtrated DOM samples
were measured from 200 to 600 nm (1 nm interval) with a 1 cm quartz
cuvette on a Shimadzu UV-2700i spectrophotometer (Japan). Milli-Q
water was employed as the reference and each absorbance spectrum
was baseline corrected by subtracting the absorbance at 700 nm (Xu
et al., 2024). DOM excitation-emission matrices were analyzed using an
Aqualog fluorescence spectrometer (Horiba, Japan). The excitation (Ex:
250-650 nm, 2 nm increment) and emission (Em: 246.08-827.571 nm, 2
pixels) wavelengths were scanned at 1200 nm/min with integration

time of 2.0 s. All EEM spectra were blank-subtracted, calibrated for
Raman scattering, corrected for inner-filter effects, and normalized into
the Raman units (R.U.) (Murphy et al., 2010). Several spectroscopic
indexes were employed to characterize DOM optical properties from the
established equations as previously described. Specifically, the absorp-
tion coefficient at 355 nm (asss) is generally used to represent chro-
mophoric DOM (CDOM) abundance. The specific ultraviolet absorbance
at 254 nm (SUVAys4) is an index to indicate DOM aromaticity (Li and
Hur, 2017). Fluorescence index (FI) was the indicator of DOM source
(>1.8: microbial source; 1.2-1.8: terrestrial origin and microbial source;
<1.2: terrestrial origin) (Cory and Mcknight, 2005). Humification index
(HIX), corresponds to the humic substances content or humification
degree of DOM, and increases with increasing DOM aromaticity
(Fellman et al., 2010). Biological index (BIX), an index to evaluate the
contribution of freshly produced autochthonous origin to DOM. Higher
BIX values (>1) suggest a predominantly biogenic sources in DOM
whereas lower values (0.6-0.7) indicate the higher input from terrestrial
sources (Huguet et al., 2009).

Parallel factor analysis (PARAFAC) was conducted to study the
fluorescent DOM components using the drEEM toolbox in MATLAB
R2019b. A four-component model was validated based on split-half
validation, random initialization, and residual analysis (Stedmon and
Bro, 2008; Zhou et al., 2023b). All fluorescent components were further
compared with the previous publications using the OpenFluor database
(Murphy et al., 2014). Component-specific maximum fluorescence in-
tensity (Fmax) quantified the relative contribution of each fluorescent
component in the DOM (Tank et al., 2011).

2.3.3. Solid-phase extraction of DOM and FT-ICR MS analysis
Equal volumes from six water samples were taken to mix up thor-
oughly to form a typical DOM sample of each lake for FT-ICR MS
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measurement. Nine filtrated samples (50 mL-100 mL, depending on the
DOC concentration) underwent solid-phase extraction (SPE) with Agi-
lent Bond Elut PPL cartridges (500 mg, 6 mL) as previously described
(Dittmar et al., 2008). The extracted DOM samples were eluted with 1
mL of 1:1 (v/v) methanol: water and then analyzed using a 15 T FT-ICR
MS equipped with a negative electrospray ionization source (Apollo II),
detailed measurement settings and calibration followed those described
in our previous studies (Xu et al., 2022, 2024). After calibration, a low
absolute mass error (less than 1 ppm) was achieved over the entire mass
range (Cao et al., 2015).

Mass peaks with a signal-to-noise ratio (S/N) above 4 were identified
using Bruker Data Analysis Software with elements constraints of Co.
100H0-20000-50N0.10S0.2, details of molecular formulae assignment were
the same as previously reported (Xu et al., 2022). Molecular charac-
teristics of DOM were revealed through various intensity-weighted pa-
rameters, including chemical elements (C, H, O, S, N), atomic ratios
(H/C, 0/C), formulae (CHO, CHOS, CHON, CHONS), molecular weight
(m/z), double bond equivalents (DBE), and aromatic index (Alpoq)-
DOM lability were evaluated via the indexes of molecular lability
boundary (MLB; %) (D’Andrilli et al., 2015) and the island of stability
(I0S%) (Lechtenfeld et al., 2014). In addition, several biochemical
compound groups were defined: polycyclic condensed aromatics (Alyea
> 0.66), polyphenols (0.66 > Alp,q > 0.50), highly unsaturated and
phenolics (Alh,q < 0.50, H/C < 1.5), aliphatics (2.0 > H/C > 1.5),
saturated compounds (H/C > 2.0, or O/C > 0.9), and carboxylic-rich
alicyclic molecules (CRAMs; DBE/C = 0.30-0.68, DBE/O = 0.77-1.75,
DBE/H = 0.20-0.95) (Kellerman et al., 2018; Xu et al., 2024).

2.4. Statistics analysis

The distribution of the lakes and sampling sites was mapped using
ArcGIS 10.1 software. Pearson correlations were conducted to explore
the relationships between HAI values and parameters of water quality,
optical properties, and molecular compositions in SPSS 26. Spearman’s
rank correlations were performed between HAI values and the relative
intensity of each identified formula from FT-ICR MS analysis in R 4.0.2.
Statistical significance thresholds were p < 0.05* and p < 0.01**.
Principal component analysis (PCA) was employed to reveal the differ-
ences in the quantity and quality of DOM across plateau lakes with
various HAI levels using Origin 2021.

Dianchi Lake Yangzonghai Lake

HAI

Yilong Lake

Erhai Lake

Fuxian Lake

1.96%

14.89% A72%

Chenghai Lake
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3. Results
3.1. HAI values in the nine plateau lakes

The nine plateau lake basins were classified into six primary land
use/cover types based on the watershed features, including farmland,
grassland, forest land, construction land, unused land, and water bodies.
The HAI values exhibited great inter-lake variability across the nine
lakes, ranging from 7.15 % to 42.10 % (Fig. 2; Table S2), where more
enriched HAI values corresponded with higher human impact and more
depleted values related to weak human disturbance. The type of con-
struction land (4.75 %-38.79 %) has the highest contribution to the HAI
values in each lake, followed by grassland (1.57 %-4.72 %) and farm-
land (0.71 %-3.14 %; Fig. 2).

3.2. Bulk geochemical characteristics

The nine plateau lakes encompassed broad variations in nutrient
concentrations, phytoplankton biomass, and oxygen balance indices
(Table S3). The average values of TN, TP, Chl a, DO, CODyy,, DOC, and
EC respectively were in the range of 0.13-2.69 mg/L, 0.008-0.106 mg/
L, 1.31-15.67 pg/L, 5.26-8.37 mg/L, 1.01-10.22 mg/L, 8.36-35.61 mg/
L, and 215.32-1361.58 pS/cm. The DOC concentrations showed positive
correlations with TN (r% = 0.63, p < 0.01**), TP (r*> = 0.60, p < 0.01**),
and Chl a (r? = 0.38, p < 0.05%; Fig. Sla—c). Additionally, it was noted
that the average TN (2 = 0.75, p < 0.01**), TP (r*> = 0.65, p < 0.05%),
Chla (r? = 0.58, p < 0.05%), and DOC (r? = 0.67, p < 0.01**) concen-
trations increased with the increasing HAI values across the sampled
lakes (Fig. 3a-d).

3.3. Optical properties of DOM

Obvious variations in optical parameters and fluorescent compo-
nents of DOM with increasing HAI values were observed among nine
plateau lakes (Table S3). The average asss values ranged from 0.46 to
4.61 m’, were positively correlated with DOC concentration (r? = 0.84,
p < 0.01**; Fig. S1d), and also increased with increasing HAI values (e
=0.65,p < 0.01*%; Fig. 3e). The averaged values of SUVA354 (0.46-0.99
L mg !-C m™!) showed a positive correlation with HIX values
(0.37-0.80; Fig. S2), and both the indexes increased with increasing HAI
values (SUVA3s54: = 0.53, p < 0.05*; HIX: = 0.52, p < 0.05%;
Fig. 3f-i). The average FI and BIX values ranged from 1.53 to 2.03 and
0.89-1.27, respectively, and had no significant correlation with the HAI
values (FI: r? = 0.07, p = 0.48; BIX: r*> = 0.15, p = 0.16; Fig. 3g and h).

Xingyun Lake Qilu Lake

Farmland

Grassland

B Construction land

Lugu Lake

Fig. 2. Contributions of farmland, grassland, and construction land types to HAI values for the nine plateau lake basins.
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Fig. 3. Regression of general water quality, optical properties, and molecular composition indexes against a HAI value gradient for the nine plateau lakes. Parameters
include (a) total nitrogen (TN), (b) total phosphorus (TP), (c) chlorophyll-a (Chl a), (d) dissolved organic carbon (DOC), (e) absorption coefficient at 355 nm (asss),
(f) specific ultraviolet absorbance at 254 nm (SUVAjs4), (g) fluorescence index (FI), (h) biological index (BIX), (i) humification index (HIX), (j) Fmax of C1, (k) Fmax
of C2, (1) Fmax of C3, (m) Fmax of C4, (n) the number of assigned formulae, (o) the number of unique formulae, (p) relative abundance of CHO formulae; (q) relative
abundance of CHOS formulae, (r) relative abundance of CHON formulae, (s) relative abundance of CHONS formulae; (t) N atom; (u) S atom. The values of water
quality and optical parameters are the averaged values, and the error bar represents the standard deviations (n = 6).

Four fluorescent components (humic-like components: C1-C3; pro-
tein-like component: C4) were resolved through EEM-PARAFAC
modeling (Fig. 4a). Both C1 and C2 are categorized as terrestrial
humic-like components, however, C1 is commonly found in wetlands,
forest streams, and agriculturally influenced streams (Hosen et al.,
2014), whereas C2 is frequently detected in high-nutrient and
wastewater-impacted environments (Fellman et al., 2010; Murphy et al.,
2011). C3 corresponds to an autochthonous marine humic-like compo-
nent, prevalent in marine environments and associated with biological
processes (Beggs and Summers, 2011; Fellman et al., 2010). C4 is a
tyrosine-like component, and usually related to the degradation prod-
ucts of DOM (Murphy et al., 2011). The total fluorescence intensity
varied widely, spanned from 0.24 to 2.90 R.U. across nine lakes
(Fig. 4b). The averaged proportions of humic-like components ranged
from 41.97 % to 86.24 %, and were more predominant in strong
human-impacted lakes (e.g., Qilu Lake). In contrast, the average per-
centage of the protein-like component ranged from 13.76 % to 58.03 %,
and was the most abundant component in the lakes with lower HAI
values, such as Lugu Lake (Fig. 4c). Notably, all DOM fluorescent

components were significantly correlated with DOC concentrations
(Fig. S1f-i) and increased with increasing HAI values (Fig. 3j—m).

3.4. Molecular composition and characteristics of DOM

FT-ICR MS showed a powerful advantage in deciphering the chemo-
diversity of DOM compositions. A total of 11,758 molecular formulae
and 3638 common formulae were identified by FT-ICR MS among the
nine plateau lakes, the numbers of CHO, CHOS, CHON, and CHONS
were 3398, 1671, 4852, and 1837, in all molecular formulae, respec-
tively, and 1835, 286, 1419, and 98, in common formulae, respectively
(Fig. S3a and b). The numbers of molecular formulae detected in each
DOM sample were in the range of 5366-8086, and the unique formulae
ranged from 138 to 669 (Table S4). The number of assigned formulae (r2
=0.79, p < 0.01**) and unique formulae 2= 0.69, p < 0.01**) in each
lake both increased with increasing HAI values (Fig. 3n and o). The
relative intensity of CHO formulae was dominant in each lake, ranged
from 53.58 % to 72.40 %, and decreased with increasing HAI values (2
= 0.72, p < 0.01**; Fig. 2p). The proportions of CHOS, CHON, and
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Fig. 4. Spectral proporties of fluorescence components identified through PARAFAC modeling: (a) four split-half validated components, (b) fluorescence intensity
distribution of four components, (c) Relative abundance distribution of four components.



L. Xu et al.

CHONS ranged from 3.95 % to 15.92 %, 21.85 %-30.31 %, and 1.66 %—
4.61 %, respectively, and all increased with increasing HAI values
(CHOS: 2 = 0.58, p < 0.05*; CHON: r? = 0.45, p < 0.05*; CHONS: r? =
0.73,p < 0.01**; Fig. 3g-s). Additionally, the values of nitrogen (N) and
sulfur (S) atoms also increased with increasing HAI values (N: = 0.40,
p < 0.05%; S: 12 = 0.64, p < 0.05%; Fig. 3t and u).

The values of molecular parameters and proportions of compound
groups showed great variability in DOM of the nine lakes (Table S4). The
values of m/z, DBE, and Alp,q ranged from 406.86 Da to 431.62 Da,
7.77 to 8.60, and 0.19 to 0.24, respectively. The MLBy, and I0S were
9.50 %-15.99 % and 10.99 %-12.89 %, respectively. Highly unsatu-
rated and phenolic compounds were predominant (79.86 %-87.04 %),
followed by aliphatic compounds (9.46 %-15.91 %), polyphenols (1.02
%-5.19 %), polycyclic condensed aromatics (0.43 %-1.67 %), and
saturated compounds (0.13 %-0.30 %) across the samples lakes. Mo-
lecular correlations (Spearman’s rank) between individual molecules
and HAI values indicate that HAI values were associated with the three
compound groups of DOM (Fig. 5a). In general, the HAI values were
positively correlated with the relative abundance of polyphenols, highly
unsaturated high-oxygen phenolic compounds (O/C > 0.5), and ali-
phatics and negatively correlated with highly unsaturated low-oxygen
phenolic compounds (0/C < 0.5). Specifically, the vast majority of
these molecules that exhibited positive relationships with HAI values are
S- and N-containing compounds, while the negatively correlated mole-
cules are mostly CHO compounds (Fig. 5e). Moreover, the water quality
parameters such as TN, TP, and Chl a, which serve as the indicators of
human impact on lakes, presented parallel correlation patterns with
DOM molecules when compared to HAI values (Fig. 5b—d, f-h).

3.5. PCA results

PCA results of HAI values, water chemistry, and DOM optical prop-
erties and molecular characteristics across the nine plateau lakes
revealed that the first two principal components (PCl1 and PC2)
accounted for 46.6 % and 21.0 % of the total variance of all parameters
(Fig. 6a). PC1 exhibited strong positive loadings that were related to HAI
values, water quality indices (DOC, TP, TN, COD, and Chl a), humifi-
cation- or aromaticity-associated indexes (SUVAjs4, HIX, DBE, and
Alpq), fluorescent components (C1 - C4), molecular parameters (CHOS,
CHON, CHONS, polycyclic condensed aromatics, and polyphenols). In
contrast, negative PC1 loadings were mainly linked to the indicator of
autochthonous features, including FI, BIX, H/C, CHO, aliphatic com-
pounds, and saturated compounds. Additionally, relatively elevated PC1
scores were observed in those lakes with greater HAI values (Fig. 6b).
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Specifically, Qilu Lake, Dianchi Lake, Yilong Lake, and Xingyun Lake
showed relatively positive PC1 scores, whereas Lugu Lake, Fuxian Lake,
Chenghai Lake, and Yangzong Lake presented negative PC1 scores.

4. Discussions
4.1. Multiple sources of DOM in the nine plateau lakes

DOM originating from allochthonous, autochthonous, and anthro-
pogenic sources were identified across the nine plateau lakes through
the analysis of DOM using optical and FT-ICR MS methods, and these
sources are mainly controlled by regional coverage of farmland, forest,
grass, and urbanization within the lake basin (Table S2). The values of FI
(1.53-2.13) and BIX (0.89-1.27) were both used to distinguish terres-
trial or microbial sources, suggesting a combined origin of DOM from
allochthonous and autochthonous sources in the plateau lakes. The
SUVAs4 and HIX values typically ranged from 0.6 to 5.3 Lmg~!-Cm™!
and 0.6-0.9 in natural waters, respectively (Hansen et al., 2016; Wang
et al., 2021), and SUVAgs4 (>6) and HIX (<0.9) could indicate the
dominance of terrestrial features and fresh plant and/or algae inputs in
DOM, respectively (Hansen et al., 2016; Jaffé et al., 2008). Thus, our
SUVAgs4 (0.46-0.99 L. mg~!-C m™!) and HIX (0.37-0.80) values sug-
gested terrestrial inputs and autogenous production as well. Many pre-
vious studies have reported similar ranges of these optical parameters in
plateau lakes (Zhang et al., 2018, 2022). Additionally, fluorescent
component Cl and two components (C3 and C4) have been widely
identified in lake ecosystems (Dong et al., 2020; Ejarque et al., 2018),
and could be used to infer terrestrial signatures and autochthonous
productions in DOM, respectively. In terms of molecular groups, the
presence of polyphenols (1.02 %-5.19 %) and highly unsaturated
compounds (79.86 %-87.04 %), which originate from vascular plants
and soil-derived products of lignin degradation (Seidel et al., 2015),
respectively, demonstrated the terrestrial DOM origin. The detection of
aliphatics (9.46 %-15.91 %), typically from products of bacterial and
algal metabolism (Kellerman et al., 2018), indicates the autochthonous
contributions to DOM. These results align with prior studies doc-
umenting both allochthonous and autochthonous sources in DOM from
other plateau lakes (Shang et al., 2022; Zhou et al., 2023a).

The humic-like component C2, which was observed in wastewater-
impacted systems (Murphy et al., 2011), and it could indicate the
anthropogenic inputs. Besides, multiple CHOS formulae belonging to
O3S and OsS classes with unexpected intensity were identified in nine
plateau lakes, resulting in the non-Gaussian distribution patterns
(Fig. S4). It was reported that the abnormally high abundances of O3S
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Fig. 6. (a) PCA results of HAI values, water quality, and DOM characteristics. (b) PC loading of lake samples in various HAI values. Colors denote the values of HAIL
PCAs, Poly, and, HUPs, SAs were short for polycyclic condensed aromatics, polyphenols, highly unsaturated and phenolic compounds, and saturated compounds.

and OsS are widely observed in human-impacted waters and domestic
wastewater (Gonsior et al., 2011). The possible formulae (e.g.,
C17H2703S, C13H2903S, C19H31033) in the Ogs class were likely related
to linear alkylbenzene sulfonates (LAS), which are a kind of widely
utilized surfactants and have been detected in domestic wastewater
(Melendez-Perez et al., 2016). Collectively, these findings denote
anthropogenic sources of DOM in plateau lakes as well. This interpre-
tation is reinforced by recent evidence that frequent human activities (e.
g., urbanization) enriched the exogenous and endogenous organic car-
bon pool in the sediments of these nine plateau lakes, corroborating the
contribution of anthropogenic inputs in DOM (Yin et al., 2024).

4.2. Changes of DOM chemistry along HAI values gradient in plateau
lakes

Significant differences in DOM quality and quantity with increasing
HAI values were revealed based on bulk, optical, and molecular
composition, which demonstrated pronounced relationships between
the degree of human activities and DOM chemistry in plateau lakes. The
DOM in plateau lakes exhibited an increasing trend of DOC, agss,
SUVAgs4, HIX, humic-like and protein-like substances, molecular di-
versity, CHOS, CHON, and CHONS with increasing HAI values, sub-
stantiating that intensified human activities have promoted the increase
in DOM quantity, aromaticity and humification degree, and molecular
complexity in plateau lakes. PCA results further confirmed the differ-
ences in sources and chemical composition of DOM in plateau lakes at
distinct levels of HAI values. These observations suggest that the DOM in
plateau lakes with higher HAI values showed both features of terrestrial
inputs and autochthonous production, whereas DOM in those with lower
HAI values displayed predominantly autochthonous signature.

As has been reported for other inland lakes, our findings demonstrate
severe impacts of human activities on DOM chemistry in plateau lakes. A
conceptual diagram was developed to elucidate the potential

Low HAI values

DOM — autochthonous
feature

transformation processes in DOM chemistry under different HAI levels
of plateau lakes (Fig. 7). Our results revealed that lower HAI values were
observed in lakes like Lugu Lake (7.15 %) and Fuxian Lake (13.74 %),
and the DOM in those lakes mainly exhibited autochthonous features.
Historical records indicate the nine studied plateau lakes previously
sustained extensive submerged macrophyte communities, though
anthropogenic pressures (e.g., urbanization, agricultural intensification)
have differentially degraded these ecosystems since the 1950s (Ley
et al., 1963; Li, 1980). For instance, the submerged vegetation in Dia-
nchi Lake has sharply declined, while Lugu Lake still retains relatively
intact macrophyte communities (Dong et al., 2014; Zhao et al., 2016).
Therefore, we deduce that organic matter released from healthy sub-
merged plants during their growth and metabolisms, along with those
from senescing tissues during their degradations, constitute the primary
endogenous DOM inputs in these plateau lakes with lower HAI values.
Conversely, the DOM in low-altitude lakes with limited anthropogenic
disturbances exhibited predominant allochthonous features as previ-
ously reported (Liu et al., 2022). This difference likely arises from the
geomorphological characteristic of plateau lakes that restricts signifi-
cant terrestrial organic matter transport pathways (e.g., riverine inputs).
Some publications on lakes of the Qinghai-Tibetan Plateau also reported
that the DOM predominantly exhibits autochthonous features (Du et al.,
2021; Zhou et al., 2023a). Moreover, the observed increase in DOC,
SUVAgs4, HIX, humic-like components (C1, C3, and C4), molecules in
polyphenols, and highly unsaturated high-oxygen phenolic compounds
with the increase of HAI values, in addition to the positive relationships
between DOC and these above terrestrial inputs indicators (Fig. S1),
imply that human activities facilitate the terrestrial organic matter in-
puts into plateau lakes. It was thus that the quantity, humification de-
gree, and aromaticity of DOM were all enhanced in plateau lakes with
higher HAI values, consistent with prior research (Dong et al., 2020; Du
et al., 2023). On the other hand, more nutrient inputs accompanied by
increasing terrestrial organic matter inputs may potentially contribute

High HAI values

allochthonous .
DON[\autocmhonou e

Fig. 7. The proposed conceptual diagram for elucidating the impacts of human activities on DOM chemistry in plateau lakes.
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to the proliferation of phytoplankton and algae, and thereby facilitating
the production of autochthonous DOM. This could be evidenced by the
increase of TN, TP, Chl q, protein-like substances (C2), and molecules in
aliphatic compounds with increasing HAI values, as well as positive
correlations between Chl a and DOC or molecules in aliphatic com-
pounds. Hence, these results revealed that human activities shift the
DOM source from autochthonous-dominated features to the coexistence
of allochthonous and autochthonous signatures in plateau lakes as hy-
pothesized. More importantly, the autochthonous DOM likely derived
from phytoplankton and algal metabolisms in those lakes with higher
HAI values. These findings agree with previous studies indicating that
abundant anthropogenic inputs of terrestrial DOM from the watershed
contribute to metabolisms of algae and phytoplankton and stimulate the
production of endogenous DOM in human-induced eutrophic lakes (Liu
et al., 2022; Wen et al., 2022).

A significant trend of change in the DOM molecular composition was
observed along the gradients of HAI values (Fig. 3n—u). Human activities
altered the molecular structure of the DOM pool by reducing the pro-
portion of CHO formulae while enhancing heteroatom S- and N-con-
taining formulae (CHOS, CHON, and CHONS), and consequently
increasing the DOM molecular diversity in plateau lakes. It is widely
recognized that intensive anthropogenic activities, including urbaniza-
tion, agricultural activities, and sewage discharge, could export terres-
trial protein-like and humic-like substances into aquatic systems,
particularly the S- and N-containing compounds (Qu et al., 2024; Shang
etal., 2022; Williams et al., 2016). For example, farmland expansion and
fertilizer usage contribute abundant N-containing compounds (Qu et al.,
2024), while elevated S-containing formulae were associated with do-
mestic sewages (Gonsior et al., 2011). Currently, some other in-
vestigations proposed that algae blooms in human-induced eutrophic
lakes may stimulate the production of S-containing compounds to
autochthonous DOM (Pang et al., 2020). Therefore, we speculated that
various anthropogenic disturbances across plateau lake watersheds
synergistically complicated the DOM pool and increased its chemical
diversity.

The dynamic changes in DOM chemistry are crucial for the health of
lake ecosystems (Tanentzap and Fonvielle, 2024). Compared to plain
(low-altitude) lakes, although plateau lakes differ in the original source
and chemical composition of DOV, the influenced patterns of human
activities on both are highly similar (e.g., source shifts, molecular
composition) (Dong et al., 2020; Liu et al., 2022; Shang et al., 2022). It is
noteworthy that pronounced differences in the formation processes and
ecosystem characteristics between the plateau and plain lakes likely lead
to distinct ecological effects from DOM dynamics. Plain lakes, charac-
terized by strong hydrological connectivity and short water renewal
times (typically less than 1 year), facilitate the downstream transport of
terrestrial inputs (e.g., nutrients, organic matter). In contrast, plateau
lakes usually have slow water renewal (e.g., Fuxian Lake with a water
renewal time as long as 167 years) (He et al., 2022), making them more
prone to accumulating those above substances. Concurrently, suitable
light and temperature conditions on the plateau areas may further
accelerate in-lake biochemical processes, such as nutrient trans-
formation and algal photosynthesis (Jia et al., 2021). These differences
possibly result in a more intense and complex DOM transformation
process in plateau lakes, accompanied by more pronounced changes in
its quantity and quality. Therefore, human-induced changes in DOM
may exert a more profound potential impact on plateau lake ecosystems
than on plain lakes.

4.3. Implications for carbon cycling in plateau lakes and future
considerations

Impacted by human activities, many freshwater lakes tend to enter
high trophic states or even eutrophic ones. As important components of
global carbon cycling, the effects of human activities on the carbon
cycling of plateau lakes have been increasingly emphasized (Du et al.,
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2023; Yin et al., 2024). Based on the variations in source, composition,
and characteristics of DOM with increasing HAI values here, the results
could suggest that intensified human activities in plateau lakes can
remarkably impact the processes of carbon release and carbon burial.
Firstly, the increased DOC concentrations with increasing HAI values
revealed more organic matter is accumulated and participated in the
biogeochemical processes in plateau lakes with intensive anthropogenic
disturbances. Secondly, with intensified human activities, both
autochthonous and allochthonous DOM increased, and the sources of
autochthonous DOM potentially shifted from submerged plants to algal
biomass, suggesting human activities have facilitated the inputs of
terrestrial organic matter into lakes and in turn promoted the production
of endogenous DOM. This may facilitate the in-lake transformation of
DOM and alter its biogeochemical processes because of the different
natures of autochthonous (e.g., more bio-labile) and allochthonous DOM
(e.g., more photoreactive) (Kellerman et al., 2018). Thirdly, intensified
human activities not only increased the organic matter chemo-diversity
but also complicated the structure of organic carbon pool within plateau
lake systems. Research indicates that heteroatoms (S- and N-containing)
compounds within DOM are considered as highly bio-labile molecules
and are rapidly metabolized by microorganisms (Ni et al., 2024), which
may enhance the DOM mineralization and potentially promote the
release of greenhouse gas. In conclusion, human activities could shape
the migration and transformation of organic carbon through re-building
the DOM quantity and quality, and further accelerates organic carbon
dynamics in plateau lakes.

This study has provided novel insights into how human activities
affects the chemistry of DOM within plateau lake systems. Nevertheless,
some limitations still exist in the current study. On the one hand, this
investigation was undertaken exclusively in summer, while the DOM
quality and quantity in plateau lakes exhibit seasonal variations, as
observed in other inland lakes, future seasonal studies should be carried
out to enable a more holistic understanding of the relationship between
human activities and DOM chemistry. On the other hand, microorgan-
isms are recognized as central drivers in DOM biogeochemical cycling
within lake ecosystems as previously reported, the dynamic interactions
between DOM chemistry and microbial communities in plateau lakes
warrants focused attention in future research, particularly in the context
of intensified anthropogenic disturbances.

5. Conclusion

By combining the UV-Vis, EEM, and FT-ICR MS techniques, the
spectroscopic properties and molecular characteristics of DOM in nine
plateau lakes (Yunnan Province, China) along a HAI gradient were
investigated to thoroughly assess the relationship between HAI levels
and DOM chemistry. This study showed that various sources (allochth-
onous, autochthonous, and anthropogenic) of DOM were revealed
within plateau lakes, and the variations of DOM quality and quantity
were highly associated with HAI values. The allochthonous and
autochthonous DOM both increased with increasing HAI values, as
indicated by significantly elevated DOC concentration, asss, SUVA2s4,
HIX, abundances of four fluorescent components, and heteroatoms (S-
and N-containing) compounds. Enhanced inputs of nutrients and
terrestrial DOM likely facilitate the algal growth and accumulation of
algal biomass, which subsequently altered the potential sources of
autochthonous DOM from submerged plant degradations to algal me-
tabolisms in plateau lakes. In addition, intensified human activities
greatly modified the chemo-diversity and complexity of DOM pools in
plateau lakes, and thus may further accelerate the carbon cycling and
affect the ecosystem health of these plateau lakes. Collectively, this
study emphasized the substantial effects of intensified human activities
on DOM chemistry in plateau lakes, and provided insights into the DOM
dynamics and biogeochemical cycles within these aquatic systems
amidst growing anthropogenic disturbances.
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