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Abstract Objective: The physiological response mechanisms of Rhododendron xiaoxidongense, a
regionally endemic and critically endangered Chinese plant, to high—temperature stress were
investigated through high temperature stress experiments. The aim was to establish theoretical
foundations for biodiversity conservation strategies of R. xiaoxidongense. Methods: A simulated high—
temperature stress experiment was conducted in controlled climate chambers to examine the impacts of
short-term high—temperature stress on leaf osmoregulatory metabolites, photosynthetic performance,
and chlorophyll fluorescence parameters in three—year—old seedlings of R. xiaoxidongense. Results:
After a 72-hour high—temperature treatment, leaf carbohydrate metabolism showed decreased soluble
sugars and starch levels, accompanied by an increase in soluble proteins. Photosynthetic parameters
including net photosynthetic rate (P,) , stomatal conductance (G,) , transpiration rate (7)) , and
intercellular CO2 concentration (C,) exhibited significant suppression relative to the control, and the
diurnal variation of photosynthetic rate showed an obvious “midday depression” phenomenon.
Photosystem II (PS II) functionality was impaired as evidenced by increased non-regulated energy
dissipation [ Y(NO) |, photochemical dissipation (P) and antenna heat dissipation (D), alongside
reduced effective quantum yield (Fv/Fm’'). Conclusion: High temperature stress induces metabolic

reprogramming of osmolytes and severely compromises photosynthetic apparatus of R. xiaoxidongense
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leaves. However, the observed enhancement of non—photochemical quenching mechanisms suggests a

thermal adaptation for mitigating photodamage through thermal energy dissipation.
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Fig. 1 Effect of high temperature stress on osmotic

adjustment substances of R. xiaoxidongense leaves
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Fig. 2 Effect of high temperature stress on light response

curve of R. xiaoxidongense leaves
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